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Local equation of state and velocity distributions of a driven granular gas
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We present event-driven simulations of a granular gas of inelastic hard disks with incomplete normal
restitution in two dimensions between vibrating wallgthout gravity). We measure hydrodynamic quantities
such as the stress tensor, density and temperature profiles, as well as velocity distributions. Relating the local
pressure to the local temperature and local density, we construct a local constitutive equation. For strong
inelasticities the local constitutive relation depends on global system parameters, like the volume fraction and
the aspect ratio. For moderate inelasticities the constitutive relation is approximately independent of the system
parameters and can hence be regarded as a local equation of state, even though the system is highly inhomo-
geneous with heterogeneous temperature and density profiles arising as a consequence of energy injection.
With respect to local velocity distributions we find that they do not scale with the square root of the local
granular temperature. Moreover the high-velocity tails are different for the distribution of &rel they
components of the velocity, and even depend on the position in the sample, the global volume fraction, and the
coefficient of restitution.
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I. INTRODUCTION [30,31, and with slight modifications in Ref$32—-34.

The physics of vibrofluidized granular materials is far One theoretical approach by which to study granular sys-
from being fully understood. In particular, the applicability tems at fluid densities rests on klnetlc theory, SE€e, €.9., Refs.
of hydrodynamics1-5] is still an object of debaté6—8. [5,35-37, and references therein. Particular applications to
Despite similarities to the hydrodynamics of elastic hard-driven granular gases can be found in R¢23,26-28,38
sphere systems, with respect to, e.g., the appearance of ins%LJCh of this work has been based on the Boltzmann or

bilities [9-12, a main difference from ordinary fluids is the Siggzsmgﬂg'igiﬁgg beyq\lljvitii((:)r?,torgglc\j/izetgisfc;\rc)rilrl}ﬁle?:rtigqﬁg!tlii(;n
fact that continuous energy injection is vital to maintain a; ' v L AL
inuous gy injection 1S Vi intal based on the local equilibrium distributi¢&9], which is

stationary state. Otherwise a gas of inelastic spheres woul'c(;CInIy known for the elastic case. For systems with strongly
fﬁleagﬁ’h;vg?at'; rEg? ast,)tz(tagcr?agfbgergxltg'luz?;a{]e%mirr:vg r:::ipelastic collisions, the stationary state is not known so a

Lo y . P Lsystematic discussion of transport properties within kinetic
ments of vibrating grains. Among the most striking feature

X . R Scheory is severely hampered.
found are non-Gaussian velocity distributiofis3—1§ and Hydrodynamic studie$2,11,12,30 have been motivated

cluster formation[17-19. Furthermore, several attempts narly by the search for understanding of temperature and
have been made to extract either an equation of state or MOgRnsjty ~ profiles [2], but also by experiments on
generally a Scaling relation for the thermOdynamiC Variable%ydrodynamiC_|ike |nstab|||t|e$g] In the hydrodynamic ap-
(20,21 proach the question of how to relate the pressure to the den-
Specification of the driving mechanism is a crucial ingre-sity and temperature arises. Several equations of state for the
dient for any model that describes vibrated granular fluids. Aglobal quantities have been proposed, which go beyond the
rather simple approach, although less appealing from an exeeal-gas limit. In Ref[2] an interpolation between the low
perimental point of view, utilizes stochastic bulk heating byand high density limits was constructed. On the other hand,
uncorrelated random forces, which act on every particle ain Refs.[31,39 the Boltzmann-Enskog equation was used to
every instant of timg22—25. In Ref.[26] random restitution determine the collisional contribution to the pressure. It is
coefficients were considered with a probability distributionnot clear whether an equation of state also holds fotdbal
allowing values both smaller and greater than one. Howevehydrodynamic fields in a strongly driven, nonequilibrium
this yields nonuniversal properties depending on the specifisystem, where the fields are strongifiomogeneous
form of this distribution. The multiplicative bulk driving de- Most simulations of vibrated granular gases have been
fined in terms of stochastic collision rules in R¢R7] is based either on event-driven molecular dynanjigs40,41
similar in spirit. Compared to bulk driving, a driving mecha- or the direct-simulation Monte Carlo meth$#8,30,42,4R
nism which acts only at a boundary of the system is muchf the system is driven through the boundaries, inhomoge-
closer to experiments. In Ref2] the energy influx at the neous density and temperature profiles are measured. For
boundary has been modeled by a heuristically motivated arew densities the computed temperature profiles agree well
satz for the heat current, while Ref28,29 assume heating with hydrodynamic theory2,30], whereas for moderate or
at the boundary through thermal walls. In the present papdnigh densities the profiles are not well understood with the
the driving mechanism consists of incrementing a particle’sxception of almost elastically colliding particles. The full
velocity by a constant amount after every collision with astress tensor, including potential contributions, has only been
wall. This way of driving was used before in, e.g., Refs.computed for freely cooling systenjd4]. In simulations of
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driven granular gasef28] the collisional part of the stress A s
; = ———
tensor has not been measured, and in R&f] the stress 7 e |
tensor is not measured directly but instead computed from ¢ —f .7 ..l o e
. L @
local equation of state. Driving Wall T A T
. . . e ° o P et® e o
Inspired by experimenfl6], a lot of emphasis has been — e o cgsce
? . L. . K . o o So0 © %3, o°
put on the tails of the velocity distribution functions, which PRI L TR RS
. — Sk ~ o 2
were found to be overpopulated compared to a Maxwellian. = =
. . . Periodic Boundary Conditions
In fact, all intermediate types of decay between a Gaussiar

I
and an exponential were obsenj&d,42,45,4% In addition, -L 0 Lo
mixtures[31,47,48 and rough spherg49] have been inves-
tigated as well as hydrodynamic instabilities such as convec- FIG. 1. (Color onling Model of N disks, driven in thex direc-
tion [50,5] and pattern formatiofi52]. tion with periodic boundary conditions in thedirection.
In this paper, we present results from event-driven simu-
lations of inelastic spheres in two dimensions confined be- The outline of the paper is as follows. In Sec. Il we intro-

tween two vibrating walls without gravity. Our focus is on dyce the model, specify the driving, and define the observ-
the stationary state, which is reached when dissipation byples. We briefly discuss balance of energy input through the
particle collisions is equal to the energy injection due to thewalls and energy dissipation in binary collisions in Sec. IIl.
vibrating walls. In the stationary state, density and temperasypsequently we present data for the profiles of the density,
ture profiles are shown to be strongly inhomogeneous due the temperature, and the components of the stress tensor
the driving walls—even in a range of parameters where clus¢sec. |V). In Sec. V we relate the local density, pressure, and

ol |

tering is only a minor effect. This has led us to: temperature to derive “experimentally” an equation of state

() derive a constitutive equation by relating the mea-and check its universality. Finally, in Sec. VI we discuss
sured hydrodynamic fields, granular temperatii(®), vol-  yvelocity distribution functions and their scaling behavior and
ume fractione(x), and pressur@(x), at each poink, and present conclusions in Sec. VII.

(b) check whether this constitutive equation is univer-

sal or depends on the global system parameters of the model,

like the aspect ratio of the cell, the overall volume fraction, Il. MODEL AND OBSERVABLES
or the coefficient of restitution of the disks. For moderately
inelastic systemscoefficient of restitutionn=0.9) the con- v ) AV X ; .
stitutive equation igalmos) independent of the remaining consisting ofN |dent|cal inelastic s_mooth hard disks of di-
global system parameters. In that case the constitutive equ@Meter and massnwhich are confined to a rectangular box
tion can be interpreted as a local equation of state for 4/th edges of length, andL,. The gas is driven through the
driven granular gas in the stationary state, even though th@@llS perpendicular to the direction, which vibrate in an

system is highly inhomogeneous with heterogeneous tenjde@lizéd sawtooth mannefsee below while periodic

perature and density profiles. In contrast, for strongly inelasPoundary conditions are imposed in telirection. Figure 1

tic systems(a=0.5 the constitutive equation depends sig- S"OWS @ typical snapshot of this. The gas evolves over time
nificantly on the global system parameters so the concept rough ballistic center-of-mass motion, binary inelastic col-
a local equation of state cannot be sustained in this case. isions, and particle-wall collisions.
We furthermore discuss the one-particle distribution func-
tion in the stationary state and show that:
(c) the local distributiorf,(x,v,) of v, the velocity in

the direction of driving’ is not a function of the rescaled The inelastic nature of intel’paftide collisions is the most
variablev,/ | Ty(x) alone. Similarly, curves of,(x,v,) can- important characteristic of granular media. As is often done

not be mapped onto a master curve for differentvhen W€ assume that it can bg tgken into account by a constant
plotted againstu,/ \m Here Ti(x) denotes the local coefficient of normal restitution and briefly recall the colli-
granular temperature associated with the translational motion ! rules_ for binary collisions, see, e.g., R4f3,54.
in the i direction. We find deviations from scaling at small The unit vect'or from the cAenter of sphere two to the penter
and large arguments. of spherg one is denoted By=(r{—ry)/|ri—r,| whe[eri is
(d) The local velocity distributionsf, and f, have the position vector o_f'the center of mass of particl@he

high-velocity tails whose decay ranges from stretched expogenter-of-mass velocn_les befor_e a collision are denot_edlby
nential to aimost Gaussian. The particular type of decay de2nd vz, and the relative velocity by;,=v,~-v,. A prime
pends on the position in the sample, the overall particle dendenot.e.s pqstcolhsmnal quantities. The relative velocity after
sity, and the coefficient of restitution. Furthermore, the decay collision is assumed to obey
of f, for large velocities is generally different from that fgf

Taken together, one has to acknowledge that the station-
ary state of a driven granular gas is by no means universal. Wherea € [0, 1] is the(constank coefficient of normal resti-
shows peculiar features that depend on the precise values tftion. The valuea=1 describes elastic collisions with en-
the system parameters in contrast to the corresponding elagrgy conservation, while foe<<1 energy will not be con-
tic system. served but instead decreased in each collision.

We investigate a driven granular gas in two dimensions

A. Binary collisions

ﬁ -vizz—aﬁ *U12, (1)
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Constitutive equation1l) plus momentum conservation To measure hydrodynamic fields in the stationary state we
determines the postcollisional velocities for the disks, subdivide our box into celly/, of area|V,|, centered at po-
sition r=(x,y). We then count the number of particles
vi=v,+Av v,=v,— Av (2) ; ; ;
pp U2=02 pp! f(r,vx,vy,0)| V| dvydoy at timet in cell V, with anx compo-
where nent of the velocity betweem, andv,+dv, andy component
of the velocity between, andv,+dv,. This local observable
(1+a) . A fluctuates as a function of time. To eliminate these fluctua-
(A -vqN. (3 i o
ions we average over @ng) time interval of lengthr and

2
. t
The model could easily be extended to rough spheres by als%ompu ©

specifying the disks’ moment of inertia as well as a coeffi-
cient of tangential restitutior8, and Coulomb frictionu fsta(r,vx,vy):—J dt f(r,ugvy,0). (5)
[55,56, but here we restrict ourselves to smooth spheres so Tt

that rotational motion is decoupled from translational mo-
tion.

Avpp: -

tot7

Of particular interest is the particle density

B. Driving P(r):f dvxf de fsta(",vx,vy), (6)
R R

When a particle collides with a driving wall, energy is
injected into the system. This can be modeled in differenor the area fractiorb(r)=p(r)ma?/4 and the two components
ways, for example, by drawing a new velocity from a Max- i=X,y of the granular temperature,
wellian distribution of a given wall temperatuf@] or by
assuming that the wall has a coefficient of normal restitution _ m _ 2
that is greater than 1. Both of these mechanisms have no T = p(r)L dvfo toy fsialf v0y) (@ = Ui0)% (7)
close experimental equivalents though. A more realistic
model is to assume a vibrating wall moving either in a sym-where
metric (e.g., sinusoidalor in an asymmetri¢e.g., sawtooth
way. In addition, this can be combined with a norniahd 1
also tangentigl coefficient of restitution/33,41,57. In this u(r) = EL deJR vy Fsial 0 0y) © ®
paper we refrain from the latter and restrict ourselves to saw- ‘
tooth driving of the walls within the limit of vanishing am- is the velocity field. The total granular temperature in two
plitude A and diverging frequency such thatAv=vge/2is  dimensions is defined a&(r)=[T,(r)+T,(r)]/2.
a constant. This ensures that the driving walls are always The stress tensor at positianand timet has a kinetic
located at the same positions and leads to the followingontribution and one that is due to interactions between the
simple expression for a particle’s change of velocity due tqarticles o(r,t)=o"(r,t)+o™™(r,t). The kinetic part is
collision with the left/right wall: given by

[ —
v' =v+Avy,,,

where

oﬁi”(r):—mj dvxf dvy foiafr v 0y)
R R

Avpy = (= 20x % Varive) &, (4) X[wi = Ui(n)][v; - Uj(n]. 9

ande, stands for the unit vector in thedirection. If the particles interact througtfinite) forces the contribu-

tion due to interactions is given by the correlations of the

C. Observables from simulations particles’ relative positions and the forces between them. For

Following, e.g., Refs[58,59 we performed event-driven hard-core interactions there are no forces, and one has to
simulations in two dimensions with periodic boundary con-consider momentum transfer in a small time interval instead

ditions in they direction and two identical idealized vibrat- [59,60: Suppose there is a collision at tinteof particle k

ing elastic walls in thex direction. We initialize the system With another particle, then the change of momentum of par-
by placing the disks on a triangular lattice with a Gaussiarficle k will contribute to the stress tensor an amount propor-
velocity distribution. To let the correlations of the initial state tional to ISt ApK(t). Hereli(t) is theith component of the
relax, the system is evolved elastically with periodic bound-vector of lengtha/2 pointing from the center of diskto the

ary conditions in they direction and elastic nonvibrating contact point of the colliding disks, andp!(t) is the jth
walls in thex direction for an average of 100 collisions per component of the change of momentum of particiguring
particle. Then we switch on driving of the left and right walls this collision. To compute the collisional part of the stress
and dissipation for particle—particle collisions. Before wetensor we need the total change of momentum in the time
start measuring the observables we let the system relax fuinterval [t—At,t] in cell V, so we have to keep track of all
ther until, at timet,, it has reached a stationary state, indi- collisions n occurring at timest, e [t—At,t], for which at
cated by the total kinetic energy, which fluctuates around deast one collision partné, (i.e., its center of ma3ss lo-
time-independent mean value. cated in cellv, at timet, [59],

051313-3



HERBST et al. PHYSICAL REVIEW E 70, 051313(2004

int 11 . ” In addition, there is one independent velocity scale, the driv-
oy (r,t) = EMZ > Iin(tn)Apj "(tn). (10 ing velocity vgive, @and one independent mass scale, the mass
Mtk of a diskm. Together with the initial positions and velocities
The particle numbek,, of each such collision can take on Of the particles this exhausts all dimensional quantities enter-
one or two values, depending on whether one or both colliing the time evolution of the system.
sion partners are located in c#l). In a second step™"(r ,t) We would like to describe the system using dimensionless
is averaged over time, similar to the other hydrodynamic\/ariab|es that do not depend on the initial conditions since
fields, in order to get the collisional part of the stress tensolVe expect stationary states to be independent of them. There-

in the stationary state, fore, we will measure all lengths in units of particle diameter
e a, gll times in units ofa/vye and alllenergies in units of
aij-“(r) _ }f dt a}}“(r,t). (11) Mugve NOte that there are no other time and energy scales.
7J4, Thus, we introduce dimensionless variables: box sizgs

— T = T — 2
The corresponding local pressupér)=-t{o(r)]/2 is de- _LXLa and Ly"';y/a’ granular temper?tureE(—TX/(ZmUdm,e)
fined as usual as the negative trace of the stress tensor @nd Ty=T,/ (MG, and stress tens@=oa’/ (Mogye)- In
vided by the space dime_nsi_on. _ the stationary state all dimensionless variables Tikand o
~ Besides hydrodynamic fields we also measure velocityareindependent of the driving velocignd only depend on
distributions in Sec. VI. They are readily obtained by inte-positionr and the remaining four independent dimensionless
grating out the relevant variables in the stationary-state dissystem parameters, which characterize the system com-
tr|put|on funcUon f_Stat A d|ﬁerenF me.thod, which is beFter pletely: the number of diskBl, the two edges of Iengt~hx
suited to determining high-velocity tails, for example, will be ~7 . - .
andL, in units ofa, and the coefficient of normal restitution

presented in Sec. VI. Nich is a di ionl terial tant
Coarse-grained measurements in space and time of certafh which IS a dimensioniess material constant. ~— .
For simplicity of notation we refrain from indicating di-

observables may depend on the coarse-graining resolution. * ~. | tities by a tilde f This should
For example, this was demonstrated for the stress tensor [{ENSIONIESS quantities by a tilde from now on. This shou

shear-flow driven granular systems[0,61. Our measure- npt cause cqnfusion, because qugntities having a physical
ments of observables in the stationary state, however, shouféimenst'?”t‘r’lv"'A”O Ior&ger be used in the rest of the paper
not suffer from such effects for two reasons: First, we could(ex\;:veIO in te pfedn_ ]&i[h ic limit. which is tak
not detect any significant nonzero local velocity field in the /'€ @€ INtErested In the macroscopic fimit, which IS taken

simulated systems and, second, because of the long-time ai/gl\(l:/hL th?tN?olo aanh Ly—.>octhW|th fixed Ilnel_d(?tntsr,:ty)\
erage needed to obtain stationary-state quantities. =N/Ly of particies. 1hus, In thé macroscopic imit the num-

Moreover, in the simulations we have never found an)})e.r of system paramete_rs_is further r_educeuxto\, anda. It
significant dependence of tlilmng-time-averagedhydrody- IS lrrrgortatnt toklfeep_x f|n|f[e, ottherW|se ballanctebof eger_gy
namic fields ory, the coordinate parallel to the driving walls. Wﬁﬁ' no w%r_ ’ _en(ta_rgy.lnpub :l)(cmrj]rs only at bounaaries,
Yet, stripe states, which are homogeneousyjrbut have whrie energy dissipation IS a bulk phenomenon.
enhanced density in the middle of the sample, are known It is instructive to estimate the average or global granular
[10,17 to exhibit instabilities with respect to density fluctua- temperaturé’:fﬁﬁ’f,zdx p(X)T(x) by balancing the energy in-
tions iny. A marginal stability analysi§l1] of granular hy-  put at the walls and the energy loss due to particle collisions
drodynamics(for a close to } determines the conditions in the bulk[33,63. As shown in the Appendix, we find that
under which such phenomena occur. As far as a comparisdhe granular temperature in the stationary state is indepen-
can be made, our systems fall into the stable region. Hencelent of the initial data and given by
we choose the celly, as stripes along thg direction, for 2\3
which we write V,, and compute the hydrodynamic fields T= <_> 211+ (m2)2p )2, (12)
with spatial resolution in the& direction only. Thus, we also ™
write p(x) instead ofp(r) and change the notation accord- _5 o . .
ingly for all other quantities. In the simulations the stripgs where /= y2x\(1-a") and y stands for the pair correlation

. at contact of the corresponding elastic system, which we es-
were all chosen to have equal widthlof/ 201, the temporal . o ;
resolution of our measurements was setAts=1, and the timate by the Henderson approximatififg. (A6)]. In Fig. 2

long-time average involves typically 191C° collision ~ We plot the global granular temperatufeas a function of
events. ! and compare it with simulations. For small values/ot
Another instability of stripe states, which is related to the simulation deviates significantly from this simple theo-

\Not _ nis ) - =i ;
oscillations of the center dense cluster in #direction[62],  'Y'S prediction. For large values af™~ (dilute and/or quasi-
will be addressed at the end of Sec. IV A. elastic systemshe agreement is reasonable. In addition, we

show the result,

IIl. DIMENSIONAL ANALYSIS AND BALANCE =1 (1+\T+ g2 )2 (13
OF ENERGY 2wy '

The model system contains three independent lengtbf a more refined calculation, which uses the pseudo-
scales: the diameter of a disk and the box sizek, andL,. Liouville-operator approach to kinetic theory that will be
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= Simple energy balance (12)

Refined energy balance (13)

o=09,L = 20,Ly =25,N=500... 14
a=0.1 ...0.999,LX=20,L>,=25.N=32
o=02..098,L =20, Ly =25,N=128
«=02..098,L =20, Ly =25,N=320
o=05,L =20.. 20000,Ly= 25,N=256
o=0.5, L = 200000, Ly =100, N=1024
=09,L =20..20000, L =25, N =256
=09, L =200000,L =100, N=1024

I
1
1
1
1
1
1
1

'"4on-0.-|-|'

5 0. 0 02 04
v XL,
FIG. 2. (Color onling Global granular temperatu%as a func- FIG. 3. (Color onling Spatial profiles of the area fractiahand
tion of the parametey ™ defined in the line below Eq12). Com-  the granular temperaturds, Ty, and T from simulations(a=0.9,
parison between simulations and the simple energy-balance argi; =20, A=10.24,N=256, ¢,=0.4, corresponding to a mean free

ment, Eqg.(12), as well as with the refined version, Ed.3). The path of ¢/L,=~0.02.
inset shows the same graph but on a nonlogarithmic scale.

andT are monotonic as well with the lowest temperatures in

presented elsewhere. Equati@®B) yields better agreement the middle of the sample.
with the data for intermediate values #f*. The reason for the increased density next to the wall is the

It is worth noting that the same type of argument whicheffective attractive potential of the wall due to entropic ef-
led to Eq.(12) also predicts that there is no generic station-fects: Once a disk gets closer to the wall than one disk di-
ary state for systems with the multiplicative driving mecha-ameter, it can only receive hits from within the box but no
nism [Eq. (Al)], described bywg,e=0 and a coefficient of hits from the direction of the wall. Thus the particle is
restitution bigger than 1 for particle-wall collisions. Instead, pushed closer to the wa[l65,64. This effect is partially
such systems either cool down or heat up according to Haff'sompensated by the driving walls, which add momentum to
law [64]; see Eq(A9) in the Appendix. This was also con- any particle hitting the walls.

firmed by simulationgnot presented To support this explanation we have also investigated sys-
tems of half the size -08x/L,<0, half the number of
IV. HYDRODYNAMIC FIELDS IN SIMULATIONS particles, with an elastic wall at=0. The resulting hydrody-

) ) , . namic fields(not shown are almost identical to the ones in

Here in Sec. IV we discuss the results of our simulationsjg '3 except for a small region of about one diameter close
for the hydrodynamic fields, computed from E@)«(11).  5'x=0 where the aforementioned effect is particularly vis-
Due to the absence of a local velocity fidld these equa- _
tions simplify accordingly. We have performed simulations |, systems exhibiting stripe states, we have sometimes
for a wide range of system parametess, ¢, Ly, Ly, and  ghserved an oscillatory instability of a central dense cluster
present examples thereof below. We then go on in Sec. V i, ihe direction[62], particularly if « is low andL, is large.
discuss the question of a local equation of state that relatg§oyever, these oscillations occur on far shorter time scales

PX), p(x), andT(x). compared to the time interval over which we average to
_ _ obtain stationary-state quantities. Hence, these oscillations
A. Density and temperature profiles are completely averaged out in the data presented.

We first present data for the density and temperature to
demonstrate that the system is strongly inhomogeneous even
for collisions with «=0.9 and moderate densities. The pa-
rameters chosen atg=20, L,=25, andN=256 so that the In Figs. 4—6 we show the components of the stress tensor
global area fraction ighy=ma’N/(4L,L,)=0.4. In Fig. 3we  0,,(X), gy,(x), and ay(x) for two different sets of param-
show the local area fractiog(x), thex andy components of eters. Figure 4 is typical of systems with fairly elastic colli-
the granular temperatur&,(x) andT,(x), as well as the iso- sions (@=0.9) and moderate densitiegp,=0.4), whereas
tropic temperaturel (x)=[Ty(x) +T,(x)]/2. We note that all Figs. 5 and 6 show rather dilute systef=0.195 at two
guantities are symmetric inas expected. Except for a small different inelasticities, a moderate oe=0.9 in Fig. 4 and
area of approximately one disk diameter next to the wallsa strong onéa=0.5). The off-diagonal componeit,, of the
(indicated by the vertical lingsthe area fraction is a mono- stress tensor is always vanishingly small. Mxecomponent
tonic function for either half of the system with the maximal o, is constant within the sample except for at a boundary
value in the middle of the system. The temperaturgsT,,  layer close to the driving walls, whereas Fig. 4 displays a dip

B. Stress tensor and pressure
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- . 0.0020 J;
[+]
XX
02 (\' = ‘/W — Oxx
vy 0.0015 — -
| ] L pT, 4
0.0010 — S,y —
0.1+ — = J
P ¥
0.0005 — E
L pT J
L/ J
[+
oY %y Ve 1] ./ S T U
; 1 . 1 : 1 : 0.4 02 0 0.2 0.4
0.4 0.2 0 02 0.4 x/L
x/L *

) ) . FIG. 6. (Color online Same as Fig. 5, but fax=0.5.
FIG. 4. (Color onling Spatial profiles of the stress tensor com-

ponentsoyy, ayy, 0y, and the producpT for the system in Fig. 3. ) in

For all x away from the boundary layergT is hard to distinguish the corresponding temperatpr@J‘xx (X)=p(X)Tx(x) and

from pT, and pT, (not shown. OJ;';(X):p(X)Ty(X). Hence the difference between the mea-
sured stress tensor and the ideal gas behavior is due to the

of o, in the center of the sample, which is more pronouncedfollisional part of the stress tensor. It can be seen clearly
for the more dilute system in Fig. 5 and hardly visible in thefrom Figs. 4—6 that collisions contribute significantly to the
strongly inelastic, dilute system of Fig. 6. Furthermasg, ~ SIress tensor measured. Here they have been measured di-
increases considerably over a broad range in Fig. 6 whefectly in the simulations and not just estimated by approxi-
moving from a driving wall towards the center of the system.mate theories as has been done elsew[&0¢31].
Currently, the origin of botlx dependences af, is not clear We have also estimated the global mean free fator
to us. While the stationary-state conditi§ho-=0 and ho- ~our simulated systems according to 8).in Ref.[2], which
mogeneity |ny require Oy and ny to be constant i on eXpresseg Solely as a funCtan of the glObal V.OIUr-ne fraction
general grounds, this is not the case &gy, We have care- %o- For the denser system with,=0.4, shown in Figs. 3 and
fully checked that thex dependence o, is not caused by 4, this gives( = 0.5(in units of the diameter of the disks, that
any shear instability associated with a nonzero velocity fieldS: ¢/Lx=0.023. For the thinner systems witi,=0.15,
U(x) in the system. Thus, there are normal stresses present §#iown in Figs. 5 and 6, one gets=1.65, that is,{/L
the simulated systems, and they dependkon ~0.033. Thus, in all cases the_mean f_ree pé_tis_ much

If the equation of state of the ideal gas were to hold, thersmaller than_ th_e scales. governing spatial variations of the
the local pressurp(x) would be related to the local tempera- hydrodynamic fields, which are of orde.
ture and density according to p(X)=p(x)T(X)
=(4/m1) p(X)T(x). For our system the kinetic part of the stress C. Density scaling
tensor is diagonal and each component is simply related t0 kg jow global area fractionsp,=0.01, we observe scal-
. : , . . | ing of the relative local area fractio#(x)/ ¢y when plotted

O versusx/L,. This is shown in Fig. 7, where we compare

{ density profiles of systems with the same degree of inelas-

0.03 = . ticity, «=0.9, and the same line densiks 10.24, but differ-
ent values of the box width 1280L, < 20 000, correspond-
ing to a global area fractionp, between 6<10°° and 4
X 1074, The relative local area fractio#/ ¢, is seen to be a
function of x/L, only and does not depend separatelylgn
and ¢,. If the global area fraction were increased beyond
y $o=0.01 (not shown, then data collapse would cease to
0.011 _ hold. In addition, the height of the peak would be reduced
and instead of the bell-shaped master curve in Fig. 7 one
L . would get overall concave profiles, similar to the one in Fig.
3.
S P = T S The hydrodynamic approach to quasielastic, driven granu-
x/L ) lar gases in Sec. Il D in Ref2] predicts for low-density

* systems that the mean free path in unitdpfdepends only

FIG. 5. (Color onling Same as Fig. 4, but for a less dense On the line density according #/L,=1/(v8\). When com-
system(a=0.9,L,=50,\=9.6,N=240, ¢,=0.15,¢/L,~0.03). puted for the situation in Fig. 7, one gets the small numerical
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Eq. (15) with @ =0.9 I & T T T
Eq. (16), elastic

25k . mmmm Eq. (4) in [67], elastic
’ L,=20,1=10.24, =04
—— L=50,A=6.4, ;0.1
—— L;=50,1=9.6, ¢;=0.15
2r 1 — L=50,3=128, 0,022
L,=50,1=19.2, =03
- s 10| —— L.=50,2=25.6,0,=0.4 -
< 15 - g |— L,=50,A=32.0, ,=0.5
< e L=100, 46,4, 9,=0.1
—— L=100,A=25.6, ;=02
1 — Lx= 1280 - —— L=100,A=384,¢,=03
—— L=100,A=51.2, 6,=0.4
« = L=2000 : L
05 — L=5120
= L ,=20000 -
ideal gas behavior
, = = Ref. [2] | 1P ————————————------I-———-g——l—-—
0 0.4 0.2 0 0.2 0.4 0 0.2 0.4 0.6 0.8
x/L (I)
X

FIG. 7. (Color onling Master curve for rescaled local area frac-  FIG. 8. (Color onling Semilogarithmic parametric plots of func-
tion in different low-density systems with the same line dengity tion G(¢) from the local equation of state, E(L4), for different

@=0.9,\=10.24,¢/L,~0.03. The dotted line corresponds to the Systems(a=0.9, L,=25, 0.0k=¢/L,<0.09. Also shown are the
theoretical prediction of Ref2]. theoretical predictions from our Eq&l5) and(16), and Eq.(4) in
Ref. [67].

value €/L,=~0.03, indicating that is not a relevant length

scale for the master curve of the rescaled spatial density prdor those in the boundary layer mentioned above order to
files. The theory of Ref[2] also makes a prediction for the Utilize a broad range of values, Fig. 8 contains data from
relative local area fractiom(x)/ ¢ in terms of the solution 11 different systems, all of which have the same coefficient
of a first-order differential equation. This differential equa- Of restitutiona=0.9 and the same heigh{=25, but differ-
tion includes one free parameter, which we have fitted irffNt widthsL, and different global area fractionf,. For not
order to match the solutiofotted line in Fig. Jatx=0 with  t00 large values o these data merge quite nicely, indicat-
the master curve from our simulations. The agreement i§19 that there is only a weak dependenceodn the global
reasonable, showing that inelasticities ®£0.9 are at the System parametets, and ¢, in the corresponding parameter

borderline of the scope of this otherwise powerful approaciange. In this case constitutive equatid) can be inter-
to quasielastic, driven granular gases. preted as the local equation of state of the system. The hori-

zontal line in Fig. 8 marks ideal-gas behavior, from whigh
deviates due to the collisional contribution to the pressure.
V. LOCAL EQUATION OF STATE These deviations increase significantly with increaseg.of

Having measured hydrodynamic fields in the steady state 1he dotted line in Fig. 8 corresponds to the function,

of the system, one is led to search for a relation among them. B
Such a constitutive equation is needed, for example, in all G(g)=1+(1+a)dy, (19

hydrodynamic approaches to driven granular gases in order . . )
to obtain a closed set of equatiof11,3Q. In Sec. IV it wherey stands for the pair correlation function at contact of

was shown that a driven granular gas is intrinsically inhomo-h€ associated elastic hard-sphere gas in thermal equilibrium
geneous. Therefore it is only natural to investigate how thd73l- Sinceé x is not known exactly, we estimate it by the
local values of the granular temperatuféx), pressurep(x), Henderson approximatiditq. (A6)] for numerical purposes.
and densityp(x) [respective area fractios(x)=p(x)7/4 in In the context of granular gases, Efj5) occurred already in

our unitg are related to each other. To do so we observe ir{39]. In Ref.[68] the pair correlation function was studied in

; - homogeneously driven inelastic system with periodic
Fig. 3 thatT(x), p(x), and¢(x) are all symmetric irx. More- a - .
over, and this is cruciakb(x) is monotone in for either sign boundary conditions. It was found to be nearly independent

of x (except for a boundary layer of approximately one di_of the coefficient of restitution and approximated well by the
ameter in [\)/vidth close to aydri\)//ing walllopwhich weyignmre Henderson approximatiofg. (A6)]. In Ref. [31] this form
Therefore one can invert the functiop(x) for positive x. of G was used in the local equation of staté) to theoreti-

. SRR ) i cally predictp(x) from simulations ofT(x) and ¢(x) in a
Upon |nsert|n@<—_¢> L¢(x)] into t_he !ocal pressure and tem driven granular gas. Figure 8 reveals that this works gener-
perature, we arrive at the constitutive equation,

ally quite well for up to rather high local area fractions
p(X) ¢(x)=0.5. In even denser systems agreement still holds for
m:G(tf)(X)), (14)  the well fluidized parts. Deviations from E@L5) start to
occur when entering the transition zones to the frozen-out
with some functionG. Figure 8 shows parametric plots on a stripe of particles in the center of these high-density systems.
semilogarithmic scale of the functio® with the values of The dash-dotted line in Fig. 8 corresponds to the interpola-
p(x)/[p(x)T(x)] plotted against those @f(x) for all x (except tion formula[2],
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where all the more dilute systems, i.e., those wih=0.2,
agree reasonably with the proposal, Etp). The concept of

a local equation of state is therefore no longer sustainable for
such strongly inelastic systems, and Et4) merely plays

the role of a local constitutive equation, which depends in
addition on the global system parameters.

Eq. (15) with &= 0.5
Eq. (16), elastic
L;=20,A=2.56, 0,=0.1
L,=20,3=3.92, ¢;=0.15
L,=20,A=5.12, $,=0.2
L,=20,A=7.68, $,=0.3
L,220,3=10.24, ¢,=0.4
L=50,1=3.2, 0,=0.05
L;=50,2=6.4, 0,=0.1

_ L=50,3=9.6,0,=0.15
g; L =50, A=12.8, §,=0.2
iji$§;s¢$=ﬁ VI. ABSENCE OF SCALING FOR VELOCITY
— DISTRIBUTIONS
Finally, we examine the local velocity distributions of the
g driven granular gas in the stationary state. We distinguish
e _ , between the local distribution,
"l ideal gas behavior
0 0.2 0.4 0.6 1
[0} fx(X,0y) = M . dvy fsalX,0x0y), (17
systemg«=0.5,L,=25, 0.0} {/L,=<0.1). the driving and the distribution,
ot & -
G(¢) v , (16) fy(X,vy) - p(X) i dUX fsta(X,Ux,Uy), (18)
¢c - d’ R

_ ] ) of the velocity component, perpendicular to the direction
for 0= ¢ < ¢, which connects the behavior of dilutean o griving. By definition, these velocity distributions are nor-
der Waals and densgordered elastic hard-sphere systems. mgajized to unity.

Here ¢.=m/(2y3)~0.91 denotes the area fraction for or- | order to determing, andf, from the simulation we use
dered closed packings in two dimensions. Equati) was  two different methods. The first one extracts them directly
applied to quasielastic granular gases in Ref, and even  according to their definitionl7) and (18) from fg,, which
for our simulations witha=0.9 there is agreement with the as determined in the manner described in Sec. Il C. One
local data in the low-density regions up #(X)<0.4. In  djsadvantage of this method is that it yields a smeared-out
addition, the most dense regions of regularly ordered, frozenyelocity distribution, which is spatially averaged over the
out particles in the center of the high-density systems argqyidth of strip V, centered arouns. This is of practically no
described correctly, too. Yet another interpolation formula forimportance in the middle of the simulation box, but strongly
G, which is rather accurate for an elastic hard-sphere gagisturbing for resolving the subtleties which occur close to
even in the vicinity of the freezing transition, was put forth the driving walls that are presented in Sec. VI A. The second
in Eq. (4) in Ref.[67] and is depicted by the dashed line in way of measuring the velocity distributions avoids this prob-
Fig. 8. The crossover between fluidized and frozen-out betem: To getf; (i:x ory) we keep track of all those partic|es
havior in our inelastic, driven systems originates from thewhich pass the line parallel to theaxis at positiorx within
transition zone at the border of the solidified stripe of par-a very long time interval of length and whosdth compo-
ticles in the system center. It is very smooth in comparison tgent of the velocity lies in a small interval of widthy
the coexistence region of the freezing transition for an equi”-aroundvi. Let us enumerate these particlesrpyand denote
brated elastic gas. Moreover, the location of the crossovepeir velocity components by and v!™. Then one has
depends on the global system parameters. Since both inteiwithin the limits r— % and AUX—>O)
polation formulas, Eq(16) and that from Ref[67], were
tailored for elastic systems in thermal equilibrium, it is sur- 1 1
prising to find such good agreement with the local data for PTi(xv) = vl < o™’
driven inelastic hard-sphere gases with restitutier0.9. L
When lowering the coefficient of restitutianfrom 0.9 to  because for=x, respectivelyi =y, the right-hand side afL9)
0.8 (not shown, there are only little changes to the plot in is equal to
Fig. 8. In particular, the spread of the data pertaining to dif- IF,(x ) IF,(x )
ferent systems increases, even for low densities. Still onef do, YL espectively f dp, XX
may be inclined to interpret Eq14) as a local equation of R vyl R oy
state—at least approximately. This situation is intermediate (20)
to the previous one witlwe=0.9 and the following one for
strongly inelastic systems with coefficient of restitutien  Here,F,(X,vy,v,) =vy fsa(X, vy, vy) denotes the component
=0.5. Figure 9 reveals major discrepancies in the local pressf the (differential) current density in the stationary state at
sure which are due to the systems with global area fractionpositionx of particles with velocity components, andvy,.
above¢@,=0.2. The discrepancies occur even at positions in Compared to the first method of measuring velocity dis-
the sample where the local area fractions are below 0.2 anglibutions, this one is also statistically more effective for de-

(19
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FIG. 10. (Color online Rescaled velocity distributiong, for Ve IV Tx (x)
differentx. [System parameter&=0.9,L,=20,\=10.24(N=256, _
$0=0.4).] FIG. 11. (Color onling Two rescaled velocity distributions,

from Fig. 10: at the left wall and in the middle of the system.

termining rare events, such as the high-velocity tails in Sec.

VI B. However, as far as,(x,v,) is concerned for smatl,, method for measuring velocity distributions. This result is in
the second method is inferior to the first, because (E8) agreement with direct-simulation-Monte Carlo results in Ref.
assigns a large weight to the relevant events and therefol@0] and molecular-dynamics simulations in RES1].

amplifies statistical fluctuations too.
B. High-velocity tails

A. Effects of the discontinuity at a driving wall Our main result for the velocity distributions is the non-

Particle-number conservation at a driving wall requiresScaling and multiformity of their tails. In order to observe
the incoming particle flux at the wall to be equal to thethese phenomena, extensive simulations for capturing rare
outgoing flux. For the velocity distributiofy this implies the ~ €vents are required and the data have to be analyzed on a
boundary conditiorf30], Iogan_thml_c s_calt_e. In contrast, onlimear scale _the rescaled

velocity distributions seem to collapse approximately, as was

F(FLI2.0,) = O+, - vy e)(l - vdrive> observed previously in e.g., Ref2,69. As an example we
oo Tox Ty Uy show in Fig. 12 the rescaled distributiofig(x, v,/ T,(X))

X (F L2, =0y + Vgrive) (21) =fy(X,vy)\Ty(x) in the middle of the sampl&x=0) and at a

which must hold for allv,>0. Here®(z)=1 for z=0, re- . — T
spectively ®(z)=0 for z<0, denotes Heaviside’s unit-step

function andv 6= 1 in our units chosen. The boundary con- %4

dition (21) relates the distributiori, of velocities prior to a L o
collision with the wall to that after a collision with the wall. Fvan
In contrast, the velocity distributiof, must obey the usual ~ *°|" ) o

reflection symmetry i, everywhere in the system, that is,

fy(xvy) = fy(x,—vy), (22 02 _

for all |x| <L, and allv,>0. = : .
We |rn'easﬁreol the velocity distributidg(x, o) at 25 dift- | , in the middle |

ferent positions in a moderately inelastic system with coeffi- - f, at the wall

cient of restitutionae=0.9. Figure 10 shows the rescaled ve- . fyin the middle

locity  distribution  F[X, 0,/ \ () 1= F(X, 0,0 Tu(X), . __|— Gaussian ,

-3 2 -1

measured using the first method. At the driving wgusjs v:/\}m l
seen to obey the boundary conditigfl). When moving

from a driving wall towards the center of the system, the gap  FIG. 12. (Color onling Combined plot of rescaled velocity dis-
in f, gradually gets smeared out, afidbecomes more and tributions of the same system as in Figs. 10 andfLin the middle
more sxmmetric. Clearly, even for this moderately inelastiCof the samplégreen crosse)s?y at a driving wall(red squares and
systemf, does not scale for different. The two extreme ?y in the middle(blue triangles Also shown is a centered Gaussian
cases fox=-L,/2 andx=0 are shown together in Fig. 11. with unit variancgblack solid ling. The inset shows the center part

The data foﬁ'x at the wall were obtained with the second ©f the main graph with th&1433/2964/1340 data points being
smoothedrunning average ovg@1/85/38 data points
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driving wall (x=+L,/2) for the same moderately inelastic sample is even more problematic due to particles that reach
system(a=0.9 as that in Figs. 10 and 11. Clearly, the curvesthe system center from a driving wall without undergoing a
are reflection symmetric iny. For comparison, we have also collision. These particles give rise to the side peaks,dh
included the symmetric distributiof, in the middle of the Figs. 13e) and 13f), which has prevented us from determin-
system. Deviations are visible for small velocities only, asing 8 in these cases.
the inset of Fig. 12 shows. The corresponding Gaussian Figure 13 contains smoothed data like those in the inset of
(solid line) in Fig. 12 suggests that the velocity distributions Fig. 12, and the scales of the horizontal axes are determined
are close to but not identical to a Maxwellian. The approxi-by the square root of the appropriate granular temperatures.
mate data collapse, observed on this level of accuracy in Figzor comparison, Fig. 14 shows the unsmoothed data corre-
12, even continues to hold if the coefficient of restitution of sponding to Fig. 13), plgtted directly versus; (in units of
the gas is varied to not too large an extent. In considerably ., ). The side peaks of, in the middle of the sample are
more inelastic systems, such as for 0.5, this is not true due to the above-mentioned particles which fly from a driv-
any longer. For example, the peakﬁj measured in the ing wall to the system center without undergoing a collision.
middle of the system would be considerably broader andror the vast majority of particlés,| is less than 80% of the
flatter than the ones &fy in the center and at the walhot ~ driving velocity. It is in the region of this highest velocity
shown. observed forf, in the middle of the sample, th&f abruptly

In contrast, Fig. 1) shows the same data in Fig. 12 on changes its slope.
a semilogarithmicscale and also includes velocities of much ~ The exponenps has also been determined experimentally
higher absolute values. From Fig. (4B it is evident that in a strongly driven gas so that gravity effects are sijid].
scaling does not hold in the high-velocity tails of the distri- A value of 3~ 1.55 was measured for a gas with coefficient
butions either. Similar observations were made before inpf restitutiona~0.93. It was found to be remarkably inde-
e.g., Refs[31,45,46. The type of decay in the high-velocity pendent of the global area fractiap, which was varied
tails is different forf, and¥,, and also depends on the posi- from 0.05 to 0.3. We have also simulated the system of Ref.
tion in the sample, the coefficient of restitutian and the ~ [16] With zero gravity(not shown and reproduced those au-
global area fractiong,. This is illustrated by examples of thors’ value forp. Even though the experimental data cover

. - . ~ -1 a wide range of velocities, some of the interesting phenom-
different systems in Fig. 13. In the insets we stjowf;[ * on ena discussed in Fig. 13 cannot be observed in this range.

a double-logar_lthmlc scale in order to determine the decay;or the same reason the significance of the particular value
exponents defined by B~1.55 should not be overestimated.
~ — oyl — Simulations of a driven granular gas in a circularly shaped
In f,(0,0, NTy(0)) ~ vy /NT,(0)" (23)  pox also yield stretched Gaussian t4#$]. In addition, evi-
~ . . . . dence is given thaB depends only on the coefficient of
for fy in the mlgdle of the samplel The exponent is def'm:"drestitution and the average ratio of the number of particle—
accordingly forf, at the wall andf, in the middle of the wall collisions and particle—particle collisions. For homoge-
sample. For the moderately inelastic systems witf0.9 in  neously driven systems the tail of the velocity distribution
the first row of Fig. 13, the asymptotics have been clearlyyas theoretically predictef®3] to be governed by the decay
reached. We note thai is different for the different distri- exponentg:S/z_Simwations of homogeneous|y driven sys-
butions, and also depends on the global area frac#lgn tems[70,71 observed the exponey®=3/2 only for unreal-
Upon loweringa (top to bottom in Fig. 1Band/or decreas- jstically low values of the coefficient of restitution.
ing the global area fractiow, (left to right), the tails off,
get more and more populated, that gdecreases. In very
simple terms, this may be understood from the fact that VIl. SUMMARY AND OUTLOOK
the largest typical velocities are always of the order of
vgrive= 1 (also see Fig. Mdand(ii) thatvgye/ v Ti(X) increases
up to 20 with decreases aef and ¢,. Hence, a Maxwellian
velocity distribution would not be able to supply enough
probability to particles with velocities of the order ofye
instead higher-populated tails are needed. This argume
suggests different behavior in different velocity regions SO,
that the distributions cannot be fitted to the functional formy
(23) over the entire range of velocitigd5]. Indeed, such a
behavior can be seen in Figs.(tig-13f). The final asymp-
totics could not always be deduced from the simulations

In this paper we explored the steady-state properties of a
granular gas, driven by vibrating walls. We have measured
the full stress tensor, including the collisional contribution.
This allowed us to obtain a constitutive equation directly
from the simulations. The constitutive equation relates local

nsity, pressure, and temperature. For small inelasticities it
an be regarded as the local equation of state of the gas
ecause it is to a large extent independent of the global sys-
tem parameters. For strongly inelastic systems this interpre-
tation cannot be sustained, instead the constitutive relation

depends on the global volume fraction and sample geometry.

even tEQUQh OrL:r datha include v_elocmes Wlh'Ch a;re _u_%_to 4QNe have also measured local velocity distributions, whose
times bigger than the appropriate granular velocitids. g velocity tails were found to depend on the position in

This applies tof, in the middle of the sample in Fig. &8,  the sample as well as on the coefficient of restitution and the
where we suspect that the final asymptotics have not beeglobal volume fraction. Moreover, the tails are different for
reached. An asymptotic analysis tf in the middle of the the two velocity components parallel and perpendicular to
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FIG. 13. (Color onling Rescaled velocity distributior?s( in the middle of the samplégreen crosses?y at a driving wall(red squares

amd?y in the middle(blue triangles like in Fig. 12, but here smoothed data are shown on a semilogrithmic scale and velocities of much
higher absolute values are included. The solid line is a centered Gaussian with unit vagp#teDifferent systems with decreasing global
area fractiongy (left to right) and decreasing coefficient of restitutien (top to bottom. The remaining system data atg=20, A

=10.24N=256) for the left column and.,=50, A =9.6(N=240) for the right column. The insets shdim ?i|‘l on a double-logarithmic scale
to determine the decay exponghfrom Eq.(23). The dashed line is the best linear fitftpin the middle of the sample the solid line tp
in the middle, and the dotted line fg at the wall.(a) System corresponding to that in Fig. 12.
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[
v' =v+Av,,

Ty (Cx7Dfy(Lx/2,vy) with

Ava: [- (1 + ay)vg* vgrivel & (A1)

The special case afy;,.=0 ande,,>1 provides an alterna-
tive driving mechanism, which, however, does not give rise
to a stationary state, as will be shown below. In order to be
able to treat this limit and for ease in reading of the formulas,
we refrain from using dimensionless physical units in this
appendix.

The average energy gaikE,, due to a single particle-
wall collision is estimated from EqA1) by averaging the
s kinetic energy before and after the collison with a Maxwell-
5 5 5 == ian velocity distribution with(global) temperatureT. This

Vi gives

Lirovrr MY rereavT M ere MR eovr ARk vy M T

:l /"

| Ty 0)fyO,vy)
P R

FIG. 14. (Color onling Velocity distributions for the system in AE,, = T<U§rive+ Aoy, /Lvdrive— (1- aﬁ,)I).
Fig. 13f), but with unsmoothed data and without rescaling of the 2 2mm m
horizontal axis. (A2)

the driving walls. To conclude, the stationary state of aThe collision frequency of particles with the Iefight) wall

driven granular gas is in generanuniversakin contrast to is estimated by

the corresponding elastic system. This is not unexpected be- N T

cause the driven granular gas is a nonequilibrium state. Fur- fow= LN 2mm' (A3)
thermore, driving the system by energy input through the X m

walls is effective only if the distance between the driving where we have assumed the density to be spatially homoge-
walls is finite so that the sample geometry enters naturally.neous throughout the system.

We plan to extend our studies in various directions. It is When two disks collide in the bulk, the average change in
straightforward to also consider rotational motion of thetotal energy is computed from Eq®) and(3) in a manner
disks by generalizing the collision rules to include tangentialsimilar to that for Eq(A2) by averaging pre- and postcolli-
restitution as well as Coulomb friction. Again, the questionsional kinetic energy, which yields
arises as to what extent the additional parameters affect the 1-a2
local equation of state. In this context it would be interesting AEy,=- -
to study the effects of gravity, which is also important for 2
comparison with experiments. Finally, one might also inves
tigate other driving mechanisms, like vibrations with finite
frequency and nonzero amplitude. Work along these lines i

T. (A4)

Finally, the number of particle—particle collisions per time is
given approximately by Enskog’s collision frequen@a],

in progress. N | T
foo=—Nax\/—, A5
pp L, X m (A5)
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for numerical purposes. It may be viewed as a heuristic ra-
tional approximation to the virial expansion gfand is the
two-dimensional equivalent to the Carnahan-Starling ap-
proximation [66] for a three-dimensional hard-sphere gas.
Here we derive the energy balanfq. (12)] by using  Additional higher-order terms to the Henderson approxima-
arguments like those in Ref83,63. We do this in a slightly  tion, which are proportional t@*/(1-¢)* have turned out
more general setting than needed for ER) and allow in  to be irrelevant for our purposes and will therefore not be
addition for inelastic collisions with the wall, characterized taken into account.
by a coefficient of restitution,,. Appropriate generalization Summing over energy loss in the bulk and energy gain at
of the collision rule(4) includes both the driving velocity the right and left walls, we obtain for the total change in
and the coefficient of restitution with the wall, granular temperature,

APPENDIX: SIMPLE ENERGY-BALANCE ARGUMENT
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dT _ 2fpuBpw + fpppp dT_ _Yert [T 1an (A9)
dt N dt 2L, V2m
_m T 2 T Thert T
= L_x 2mm Udrive + 4y oamidive” 5 T ) which has been discussed extensively in a different context

of freely cooling granular gases. Here the temperature con-
(A7) tinues to decrease or increase depending on whether dissipa-
Here the dimensionless parameter, tion or driving wins.
(b) For a,=1 anduvg;ye>0 the granular temperature
_ 2 5, adjusts to the driving so that the stationary state with
Peit = 9~ ;(QW_ D, (A8)  4T/dt=0 is characterized by the quadratic equation,

is given in terms ofy= \Qxax(l—az), which was already _
introduced in the text below E@12). (We note thaha is the 2T wy—
dimensionless line density employed thei/e briefly dis- v\ — - T=0.
cuss two special cases:

(@) For vgie=0 and a,>1 no stationary state is
reached in general. Both energy gain and loss increase likeolution of Eq.(A10) for the dimensionless global tempera-

(A10)

T3, resulting in Haff’s law, ture T=T/(mw3,,) is given in Eq.(12).
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