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We present event-driven simulations of a granular gas of inelastic hard disks with incomplete normal
restitution in two dimensions between vibrating walls(without gravity). We measure hydrodynamic quantities
such as the stress tensor, density and temperature profiles, as well as velocity distributions. Relating the local
pressure to the local temperature and local density, we construct a local constitutive equation. For strong
inelasticities the local constitutive relation depends on global system parameters, like the volume fraction and
the aspect ratio. For moderate inelasticities the constitutive relation is approximately independent of the system
parameters and can hence be regarded as a local equation of state, even though the system is highly inhomo-
geneous with heterogeneous temperature and density profiles arising as a consequence of energy injection.
With respect to local velocity distributions we find that they do not scale with the square root of the local
granular temperature. Moreover the high-velocity tails are different for the distribution of thex and they
components of the velocity, and even depend on the position in the sample, the global volume fraction, and the
coefficient of restitution.
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I. INTRODUCTION

The physics of vibrofluidized granular materials is far
from being fully understood. In particular, the applicability
of hydrodynamics[1–5] is still an object of debate[6–8].
Despite similarities to the hydrodynamics of elastic hard-
sphere systems, with respect to, e.g., the appearance of insta-
bilities [9–12], a main difference from ordinary fluids is the
fact that continuous energy injection is vital to maintain a
stationary state. Otherwise a gas of inelastic spheres would
collapse, even in the absence of gravity. The nontrivial na-
ture of this stationary state has been elucidated in experi-
ments of vibrating grains. Among the most striking features
found are non-Gaussian velocity distributions[13–16] and
cluster formation [17–19]. Furthermore, several attempts
have been made to extract either an equation of state or more
generally a scaling relation for the thermodynamic variables
[20,21].

Specification of the driving mechanism is a crucial ingre-
dient for any model that describes vibrated granular fluids. A
rather simple approach, although less appealing from an ex-
perimental point of view, utilizes stochastic bulk heating by
uncorrelated random forces, which act on every particle at
every instant of time[22–25]. In Ref.[26] random restitution
coefficients were considered with a probability distribution
allowing values both smaller and greater than one. However,
this yields nonuniversal properties depending on the specific
form of this distribution. The multiplicative bulk driving de-
fined in terms of stochastic collision rules in Ref.[27] is
similar in spirit. Compared to bulk driving, a driving mecha-
nism which acts only at a boundary of the system is much
closer to experiments. In Ref.[2] the energy influx at the
boundary has been modeled by a heuristically motivated an-
satz for the heat current, while Refs.[28,29] assume heating
at the boundary through thermal walls. In the present paper
the driving mechanism consists of incrementing a particle’s
velocity by a constant amount after every collision with a
wall. This way of driving was used before in, e.g., Refs.

[30,31], and with slight modifications in Refs.[32–34].
One theoretical approach by which to study granular sys-

tems at fluid densities rests on kinetic theory, see, e.g., Refs.
[5,35–37], and references therein. Particular applications to
driven granular gases can be found in Refs.[23,26–28,38].
Much of this work has been based on the Boltzmann or
Boltzmann-Enskog equation, modified for inelastic colli-
sions. One method by which to solve this nonlinear equation
is based on the local equilibrium distribution[39], which is
only known for the elastic case. For systems with strongly
inelastic collisions, the stationary state is not known so a
systematic discussion of transport properties within kinetic
theory is severely hampered.

Hydrodynamic studies[2,11,12,30] have been motivated
partly by the search for understanding of temperature and
density profiles [2], but also by experiments on
hydrodynamic-like instabilities[9]. In the hydrodynamic ap-
proach the question of how to relate the pressure to the den-
sity and temperature arises. Several equations of state for the
global quantities have been proposed, which go beyond the
ideal-gas limit. In Ref.[2] an interpolation between the low
and high density limits was constructed. On the other hand,
in Refs.[31,39] the Boltzmann-Enskog equation was used to
determine the collisional contribution to the pressure. It is
not clear whether an equation of state also holds for thelocal
hydrodynamic fields in a strongly driven, nonequilibrium
system, where the fields are stronglyinhomogeneous.

Most simulations of vibrated granular gases have been
based either on event-driven molecular dynamics[31,40,41]
or the direct-simulation Monte Carlo method[28,30,42,43].
If the system is driven through the boundaries, inhomoge-
neous density and temperature profiles are measured. For
low densities the computed temperature profiles agree well
with hydrodynamic theory[2,30], whereas for moderate or
high densities the profiles are not well understood with the
exception of almost elastically colliding particles. The full
stress tensor, including potential contributions, has only been
computed for freely cooling systems[44]. In simulations of
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driven granular gases[28] the collisional part of the stress
tensor has not been measured, and in Ref.[31] the stress
tensor is not measured directly but instead computed from a
local equation of state.

Inspired by experiment[16], a lot of emphasis has been
put on the tails of the velocity distribution functions, which
were found to be overpopulated compared to a Maxwellian.
In fact, all intermediate types of decay between a Gaussian
and an exponential were observed[31,42,45,46]. In addition,
mixtures[31,47,48] and rough spheres[49] have been inves-
tigated as well as hydrodynamic instabilities such as convec-
tion [50,51] and pattern formation[52].

In this paper, we present results from event-driven simu-
lations of inelastic spheres in two dimensions confined be-
tween two vibrating walls without gravity. Our focus is on
the stationary state, which is reached when dissipation by
particle collisions is equal to the energy injection due to the
vibrating walls. In the stationary state, density and tempera-
ture profiles are shown to be strongly inhomogeneous due to
the driving walls—even in a range of parameters where clus-
tering is only a minor effect. This has led us to:

(a) derive a constitutive equation by relating the mea-
sured hydrodynamic fields, granular temperatureTsxd, vol-
ume fractionfsxd, and pressurepsxd, at each pointx, and

(b) check whether this constitutive equation is univer-
sal or depends on the global system parameters of the model,
like the aspect ratio of the cell, the overall volume fraction,
or the coefficient of restitution of the disks. For moderately
inelastic systems(coefficient of restitutiona=0.9) the con-
stitutive equation is(almost) independent of the remaining
global system parameters. In that case the constitutive equa-
tion can be interpreted as a local equation of state for a
driven granular gas in the stationary state, even though the
system is highly inhomogeneous with heterogeneous tem-
perature and density profiles. In contrast, for strongly inelas-
tic systemssa=0.5d the constitutive equation depends sig-
nificantly on the global system parameters so the concept of
a local equation of state cannot be sustained in this case.

We furthermore discuss the one-particle distribution func-
tion in the stationary state and show that:

(c) the local distributionfxsx,vxd of vx, the velocity in
the direction of driving, is not a function of the rescaled
variablevx/ÎTxsxd alone. Similarly, curves offysx,vyd can-
not be mapped onto a master curve for differentx, when
plotted againstvy/ÎTysxd. Here Tisxd denotes the local
granular temperature associated with the translational motion
in the i direction. We find deviations from scaling at small
and large arguments.

(d) The local velocity distributionsfx and fy have
high-velocity tails whose decay ranges from stretched expo-
nential to almost Gaussian. The particular type of decay de-
pends on the position in the sample, the overall particle den-
sity, and the coefficient of restitution. Furthermore, the decay
of fx for large velocities is generally different from that offy.

Taken together, one has to acknowledge that the station-
ary state of a driven granular gas is by no means universal. It
shows peculiar features that depend on the precise values of
the system parameters in contrast to the corresponding elas-
tic system.

The outline of the paper is as follows. In Sec. II we intro-
duce the model, specify the driving, and define the observ-
ables. We briefly discuss balance of energy input through the
walls and energy dissipation in binary collisions in Sec. III.
Subsequently we present data for the profiles of the density,
the temperature, and the components of the stress tensor
(Sec. IV). In Sec. V we relate the local density, pressure, and
temperature to derive “experimentally” an equation of state
and check its universality. Finally, in Sec. VI we discuss
velocity distribution functions and their scaling behavior and
present conclusions in Sec. VII.

II. MODEL AND OBSERVABLES

We investigate a driven granular gas in two dimensions
consisting ofN identical inelastic smooth hard disks of di-
ametera and massm which are confined to a rectangular box
with edges of lengthLx andLy. The gas is driven through the
walls perpendicular to thex direction, which vibrate in an
idealized sawtooth manner(see below), while periodic
boundary conditions are imposed in they direction. Figure 1
shows a typical snapshot of this. The gas evolves over time
through ballistic center-of-mass motion, binary inelastic col-
lisions, and particle–wall collisions.

A. Binary collisions

The inelastic nature of interparticle collisions is the most
important characteristic of granular media. As is often done
we assume that it can be taken into account by a constant
coefficient of normal restitution and briefly recall the colli-
sion rules for binary collisions, see, e.g., Refs.[53,54].

The unit vector from the center of sphere two to the center
of sphere one is denoted byn̂=sr1−r2d / ur1−r2u where r i is
the position vector of the center of mass of particlei. The
center-of-mass velocities before a collision are denoted byv1
and v2, and the relative velocity byv12=v1−v2. A prime
denotes postcollisional quantities. The relative velocity after
a collision is assumed to obey

n̂ ·v128 = − an̂ ·v12, s1d

whereaP f0,1g is the(constant) coefficient of normal resti-
tution. The valuea=1 describes elastic collisions with en-
ergy conservation, while fora,1 energy will not be con-
served but instead decreased in each collision.

FIG. 1. (Color online) Model of N disks, driven in thex direc-
tion with periodic boundary conditions in they direction.
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Constitutive equation(1) plus momentum conservation
determines the postcollisional velocities for the disks,

v18 = v1 + Dvpp, v28 = v2 − Dvpp, s2d

where

Dvpp = −
s1 + ad

2
sn̂ ·v12dn̂. s3d

The model could easily be extended to rough spheres by also
specifying the disks’ moment of inertia as well as a coeffi-
cient of tangential restitutionb0 and Coulomb frictionm
[55,56], but here we restrict ourselves to smooth spheres so
that rotational motion is decoupled from translational mo-
tion.

B. Driving

When a particle collides with a driving wall, energy is
injected into the system. This can be modeled in different
ways, for example, by drawing a new velocity from a Max-
wellian distribution of a given wall temperature[2] or by
assuming that the wall has a coefficient of normal restitution
that is greater than 1. Both of these mechanisms have no
close experimental equivalents though. A more realistic
model is to assume a vibrating wall moving either in a sym-
metric (e.g., sinusoidal) or in an asymmetric(e.g., sawtooth)
way. In addition, this can be combined with a normal(and
also tangential) coefficient of restitution[33,41,57]. In this
paper we refrain from the latter and restrict ourselves to saw-
tooth driving of the walls within the limit of vanishing am-
plitudeA and diverging frequencyn such thatAn=vdrive/2 is
a constant. This ensures that the driving walls are always
located at the same positions and leads to the following
simple expression for a particle’s change of velocity due to
collision with the left/right wall:

v8 = v + Dvpw,

where

Dvpw = s− 2vx ± vdrivedex, s4d

andex stands for the unit vector in thex direction.

C. Observables from simulations

Following, e.g., Refs.[58,59] we performed event-driven
simulations in two dimensions with periodic boundary con-
ditions in they direction and two identical idealized vibrat-
ing elastic walls in thex direction. We initialize the system
by placing the disks on a triangular lattice with a Gaussian
velocity distribution. To let the correlations of the initial state
relax, the system is evolved elastically with periodic bound-
ary conditions in they direction and elastic nonvibrating
walls in thex direction for an average of 100 collisions per
particle. Then we switch on driving of the left and right walls
and dissipation for particle–particle collisions. Before we
start measuring the observables we let the system relax fur-
ther until, at timet0, it has reached a stationary state, indi-
cated by the total kinetic energy, which fluctuates around a
time-independent mean value.

To measure hydrodynamic fields in the stationary state we
subdivide our box into cellsVr of areauVru, centered at po-
sition r =sx,yd. We then count the number of particles
fsr ,vx,vy,td uVr udvxdvy at timet in cell Vr with anx compo-
nent of the velocity betweenvx andvx+dvx andy component
of the velocity betweenvy andvy+dvy. This local observable
fluctuates as a function of time. To eliminate these fluctua-
tions we average over a(long) time interval of lengtht and
compute

fstatsr,vx,vyd =
1

t
E

t0

t0+t

dt fsr,vx,vy,td. s5d

Of particular interest is the particle density

rsrd =E
R

dvxE
R

dvy fstatsr,vx,vyd, s6d

or the area fractionfsrd=rsrdpa2/4 and the two components
i =x,y of the granular temperature,

Tisrd =
m

rsrdER
dvxE

R
dvy fstat„r,vx,vyd „vi − Uisrd…2, s7d

where

Usrd =
1

rsrdER
dvxE

R
dvy fstatsr,vx,vyd v s8d

is the velocity field. The total granular temperature in two
dimensions is defined asTsrd=fTxsrd+Tysrdg /2.

The stress tensor at positionr and time t has a kinetic
contribution and one that is due to interactions between the
particles ssr ,td=skinsr ,td+sintsr ,td. The kinetic part is
given by

si j
kinsrd = − mE

R
dvxE

R
dvy fstatsr,vx,vyd

3fvi − Uisrdgfv j − Ujsrdg. s9d

If the particles interact through(finite) forces the contribu-
tion due to interactions is given by the correlations of the
particles’ relative positions and the forces between them. For
hard-core interactions there are no forces, and one has to
consider momentum transfer in a small time interval instead
[59,60]: Suppose there is a collision at timet of particle k
with another particle, then the change of momentum of par-
ticle k will contribute to the stress tensor an amount propor-
tional to l i

kstdDpj
kstd. Here l i

kstd is the ith component of the
vector of lengtha/2 pointing from the center of diskk to the
contact point of the colliding disks, andDpj

kstd is the j th
component of the change of momentum of particlek during
this collision. To compute the collisional part of the stress
tensor we need the total change of momentum in the time
interval ft−Dt ,tg in cell Vr so we have to keep track of all
collisions n occurring at timestnP ft−Dt ,tg, for which at
least one collision partnerkn (i.e., its center of mass) is lo-
cated in cellVr at time tn [59],
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si j
intsr,td =

1

Dt

1

uVru
o

tn

o
kn

l i
knstndDpj

knstnd. s10d

The particle numberkn of each such collision can take on
one or two values, depending on whether one or both colli-
sion partners are located in cellVr. In a second stepsintsr ,td
is averaged over time, similar to the other hydrodynamic
fields, in order to get the collisional part of the stress tensor
in the stationary state,

si j
intsrd =

1

t
E

t0

t0+t

dt si j
intsr,td. s11d

The corresponding local pressurepsrd=−trfssrdg /2 is de-
fined as usual as the negative trace of the stress tensor di-
vided by the space dimension.

Besides hydrodynamic fields we also measure velocity
distributions in Sec. VI. They are readily obtained by inte-
grating out the relevant variables in the stationary-state dis-
tribution function fstat. A different method, which is better
suited to determining high-velocity tails, for example, will be
presented in Sec. VI.

Coarse-grained measurements in space and time of certain
observables may depend on the coarse-graining resolution.
For example, this was demonstrated for the stress tensor in
shear-flow driven granular systems in[60,61]. Our measure-
ments of observables in the stationary state, however, should
not suffer from such effects for two reasons: First, we could
not detect any significant nonzero local velocity field in the
simulated systems and, second, because of the long-time av-
erage needed to obtain stationary-state quantities.

Moreover, in the simulations we have never found any
significant dependence of the(long-time-averaged) hydrody-
namic fields ony, the coordinate parallel to the driving walls.
Yet, stripe states, which are homogeneous iny, but have
enhanced density in the middle of the sample, are known
[10,11] to exhibit instabilities with respect to density fluctua-
tions in y. A marginal stability analysis[11] of granular hy-
drodynamics(for a close to 1) determines the conditions
under which such phenomena occur. As far as a comparison
can be made, our systems fall into the stable region. Hence,
we choose the cellsVr as stripes along they direction, for
which we write Vx, and compute the hydrodynamic fields
with spatial resolution in thex direction only. Thus, we also
write rsxd instead ofrsrd and change the notation accord-
ingly for all other quantities. In the simulations the stripesVx
were all chosen to have equal width ofLx/201, the temporal
resolution of our measurements was set toDt=1, and the
long-time average involves typically 107–109 collision
events.

Another instability of stripe states, which is related to
oscillations of the center dense cluster in thex direction[62],
will be addressed at the end of Sec. IV A.

III. DIMENSIONAL ANALYSIS AND BALANCE
OF ENERGY

The model system contains three independent length
scales: the diametera of a disk and the box sizes,Lx andLy.

In addition, there is one independent velocity scale, the driv-
ing velocityvdrive, and one independent mass scale, the mass
of a diskm. Together with the initial positions and velocities
of the particles this exhausts all dimensional quantities enter-
ing the time evolution of the system.

We would like to describe the system using dimensionless
variables that do not depend on the initial conditions since
we expect stationary states to be independent of them. There-
fore, we will measure all lengths in units of particle diameter
a, all times in units ofa/vdrive, and all energies in units of
mvdrive

2 . Note that there are no other time and energy scales.

Thus, we introduce dimensionless variables: box sizesL̃x

=Lx/a and L̃y=Ly/a, granular temperaturesT̃x=Tx/ smvdrive
2 d

and T̃y=Ty/ smvdrive
2 d, and stress tensors̃=sa2/ smvdrive

2 d. In

the stationary state all dimensionless variables likeT̃ and s̃
are independent of the driving velocityand only depend on
positionr and the remaining four independent dimensionless
system parameters, which characterize the system com-

pletely: the number of disksN, the two edges of lengthL̃x

andL̃y in units ofa, and the coefficient of normal restitution
a, which is a dimensionless material constant.

For simplicity of notation we refrain from indicating di-
mensionless quantities by a tilde from now on. This should
not cause confusion, because quantities having a physical
dimension will no longer be used in the rest of the paper
(except in the Appendix).

We are interested in the macroscopic limit, which is taken
such that N→` and Ly→` with fixed line density l
=N/Ly of particles. Thus, in the macroscopic limit the num-
ber of system parameters is further reduced toLx, l, anda. It
is important to keepLx finite, otherwise balance of energy
would not work: energy input occurs only at boundaries,
while energy dissipation is a bulk phenomenon.

It is instructive to estimate the average or global granular

temperatureT̄=e−Lx/2
Lx/2 dx rsxdTsxd by balancing the energy in-

put at the walls and the energy loss due to particle collisions
in the bulk [33,63]. As shown in the Appendix, we find that
the granular temperature in the stationary state is indepen-
dent of the initial data and given by

T̄ = S 2

p
D3

c−2s1 +Î1 + sp/2d2c d2, s12d

wherec=Î2xls1−a2d andx stands for the pair correlation
at contact of the corresponding elastic system, which we es-
timate by the Henderson approximation[Eq. (A6)]. In Fig. 2

we plot the global granular temperatureT̄ as a function of
c−1 and compare it with simulations. For small values ofc−1

the simulation deviates significantly from this simple theo-
ry’s prediction. For large values ofc−1 (dilute and/or quasi-
elastic systems) the agreement is reasonable. In addition, we
show the result,

T̄ =
1

2pc2s1 +Î1 + c/2 d2, s13d

of a more refined calculation, which uses the pseudo-
Liouville-operator approach to kinetic theory that will be
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presented elsewhere. Equation(13) yields better agreement
with the data for intermediate values ofc−1.

It is worth noting that the same type of argument which
led to Eq.(12) also predicts that there is no generic station-
ary state for systems with the multiplicative driving mecha-
nism [Eq. (A1)], described byvdrive=0 and a coefficient of
restitution bigger than 1 for particle–wall collisions. Instead,
such systems either cool down or heat up according to Haff’s
law [64]; see Eq.(A9) in the Appendix. This was also con-
firmed by simulations(not presented).

IV. HYDRODYNAMIC FIELDS IN SIMULATIONS

Here in Sec. IV we discuss the results of our simulations
for the hydrodynamic fields, computed from Eqs.(6)–(11).
Due to the absence of a local velocity fieldU, these equa-
tions simplify accordingly. We have performed simulations
for a wide range of system parameters,a, f0, Lx, Ly, and
present examples thereof below. We then go on in Sec. V to
discuss the question of a local equation of state that relates
psxd, rsxd, andTsxd.

A. Density and temperature profiles

We first present data for the density and temperature to
demonstrate that the system is strongly inhomogeneous even
for collisions with a=0.9 and moderate densities. The pa-
rameters chosen areLx=20, Ly=25, andN=256 so that the
global area fraction isf0=pa2N/ s4LxLyd=0.4. In Fig. 3 we
show the local area fractionfsxd, thex andy components of
the granular temperature,Txsxd andTysxd, as well as the iso-
tropic temperatureTsxd=fTxsxd+Tysxdg /2. We note that all
quantities are symmetric inx as expected. Except for a small
area of approximately one disk diameter next to the walls
(indicated by the vertical lines), the area fraction is a mono-
tonic function for either half of the system with the maximal
value in the middle of the system. The temperaturesTx, Ty,

andT are monotonic as well with the lowest temperatures in
the middle of the sample.

The reason for the increased density next to the wall is the
effective attractive potential of the wall due to entropic ef-
fects: Once a disk gets closer to the wall than one disk di-
ameter, it can only receive hits from within the box but no
hits from the direction of the wall. Thus the particle is
pushed closer to the wall[65,66]. This effect is partially
compensated by the driving walls, which add momentum to
any particle hitting the walls.

To support this explanation we have also investigated sys-
tems of half the size −0.5øx/Lxø0, half the number of
particles, with an elastic wall atx=0. The resulting hydrody-
namic fields(not shown) are almost identical to the ones in
Fig. 3 except for a small region of about one diameter close
to x=0 where the aforementioned effect is particularly vis-
ible.

In systems exhibiting stripe states, we have sometimes
observed an oscillatory instability of a central dense cluster
in thex direction[62], particularly ifa is low andLx is large.
However, these oscillations occur on far shorter time scales
compared to the time intervalt, over which we average to
obtain stationary-state quantities. Hence, these oscillations
are completely averaged out in the data presented.

B. Stress tensor and pressure

In Figs. 4–6 we show the components of the stress tensor
sxxsxd, syysxd, and sxysxd for two different sets of param-
eters. Figure 4 is typical of systems with fairly elastic colli-
sions sa=0.9d and moderate densitiessf0=0.4d, whereas
Figs. 5 and 6 show rather dilute systemssf0=0.15d at two
different inelasticities, a moderate one(a=0.9 in Fig. 4) and
a strong onesa=0.5d. The off-diagonal componentsxy of the
stress tensor is always vanishingly small. Thexx component
sxx is constant within the sample except for at a boundary
layer close to the driving walls, whereas Fig. 4 displays a dip

FIG. 2. (Color online) Global granular temperatureT̄ as a func-
tion of the parameterc−1 defined in the line below Eq.(12). Com-
parison between simulations and the simple energy-balance argu-
ment, Eq.(12), as well as with the refined version, Eq.(13). The
inset shows the same graph but on a nonlogarithmic scale.

FIG. 3. (Color online) Spatial profiles of the area fractionf and
the granular temperaturesTx, Ty, andT from simulations(a=0.9,
Lx=20, l=10.24,N=256, f0=0.4, corresponding to a mean free
path of, /Lx<0.02).
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of syy in the center of the sample, which is more pronounced
for the more dilute system in Fig. 5 and hardly visible in the
strongly inelastic, dilute system of Fig. 6. Furthermore,syy
increases considerably over a broad range in Fig. 6 when
moving from a driving wall towards the center of the system.
Currently, the origin of bothx dependences ofsyy is not clear
to us. While the stationary-state condition= ·s=0 and ho-
mogeneity iny require sxx and sxy to be constant inx on
general grounds, this is not the case forsyy. We have care-
fully checked that thex dependence ofsyy is not caused by
any shear instability associated with a nonzero velocity field
Usxd in the system. Thus, there are normal stresses present in
the simulated systems, and they depend onx.

If the equation of state of the ideal gas were to hold, then
the local pressurepsxd would be related to the local tempera-
ture and density according to psxd=rsxdTsxd
=s4/pdfsxdTsxd. For our system the kinetic part of the stress
tensor is diagonal and each component is simply related to

the corresponding temperaturesxx
kinsxd=rsxdTxsxd and

syy
kinsxd=rsxdTysxd. Hence the difference between the mea-

sured stress tensor and the ideal gas behavior is due to the
collisional part of the stress tensor. It can be seen clearly
from Figs. 4–6 that collisions contribute significantly to the
stress tensor measured. Here they have been measured di-
rectly in the simulations and not just estimated by approxi-
mate theories as has been done elsewhere[30,31].

We have also estimated the global mean free path, for
our simulated systems according to Eq.(9) in Ref. [2], which
expresses, solely as a function of the global volume fraction
f0. For the denser system withf0=0.4, shown in Figs. 3 and
4, this gives,<0.5 (in units of the diameter of the disks, that
is, , /Lx<0.025). For the thinner systems withf0=0.15,
shown in Figs. 5 and 6, one gets,<1.65, that is,, /Lx
<0.033. Thus, in all cases the mean free path, is much
smaller than the scales governing spatial variations of the
hydrodynamic fields, which are of orderLx.

C. Density scaling

For low global area fractions,f0&0.01, we observe scal-
ing of the relative local area fractionfsxd /f0 when plotted
versusx/Lx. This is shown in Fig. 7, where we compare
density profiles of systems with the same degree of inelas-
ticity, a=0.9, and the same line density,l=10.24, but differ-
ent values of the box width 1280øLxø20 000, correspond-
ing to a global area fractionf0 between 6310−3 and 4
310−4. The relative local area fractionf /f0 is seen to be a
function of x/Lx only and does not depend separately onLx
and f0. If the global area fraction were increased beyond
f0<0.01 (not shown), then data collapse would cease to
hold. In addition, the height of the peak would be reduced
and instead of the bell-shaped master curve in Fig. 7 one
would get overall concave profiles, similar to the one in Fig.
3.

The hydrodynamic approach to quasielastic, driven granu-
lar gases in Sec. II D in Ref.[2] predicts for low-density
systems that the mean free path in units ofLx depends only
on the line density according to, /Lx=1/sÎ8ld. When com-
puted for the situation in Fig. 7, one gets the small numerical

FIG. 4. (Color online) Spatial profiles of the stress tensor com-
ponentssxx, syy, sxy, and the productrT for the system in Fig. 3.
For all x away from the boundary layers,rT is hard to distinguish
from rTx andrTy (not shown).

FIG. 5. (Color online) Same as Fig. 4, but for a less dense
system(a=0.9, Lx=50, l=9.6, N=240,f0=0.15,, /Lx<0.03).

FIG. 6. (Color online) Same as Fig. 5, but fora=0.5.
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value , /Lx<0.03, indicating that, is not a relevant length
scale for the master curve of the rescaled spatial density pro-
files. The theory of Ref.[2] also makes a prediction for the
relative local area fractionfsxd /f0 in terms of the solution
of a first-order differential equation. This differential equa-
tion includes one free parameter, which we have fitted in
order to match the solution(dotted line in Fig. 7) at x=0 with
the master curve from our simulations. The agreement is
reasonable, showing that inelasticities ofa=0.9 are at the
borderline of the scope of this otherwise powerful approach
to quasielastic, driven granular gases.

V. LOCAL EQUATION OF STATE

Having measured hydrodynamic fields in the steady state
of the system, one is led to search for a relation among them.
Such a constitutive equation is needed, for example, in all
hydrodynamic approaches to driven granular gases in order
to obtain a closed set of equations[2,11,30]. In Sec. IV it
was shown that a driven granular gas is intrinsically inhomo-
geneous. Therefore it is only natural to investigate how the
local values of the granular temperatureTsxd, pressurepsxd,
and densityrsxd [respective area fractionfsxd=rsxdp /4 in
our units] are related to each other. To do so we observe in
Fig. 3 thatTsxd, psxd, andfsxd are all symmetric inx. More-
over, and this is crucial,fsxd is monotone inx for either sign
of x (except for a boundary layer of approximately one di-
ameter in width close to a driving wall, which we ignore).
Therefore one can invert the functionfsxd for positive x.
Upon insertingx=f−1ffsxdg into the local pressure and tem-
perature, we arrive at the constitutive equation,

psxd
rsxdTsxd

= G„fsxd…, s14d

with some functionG. Figure 8 shows parametric plots on a
semilogarithmic scale of the functionG with the values of
psxd / frsxdTsxdg plotted against those offsxd for all x (except

for those in the boundary layer mentioned above). In order to
utilize a broad range off values, Fig. 8 contains data from
11 different systems, all of which have the same coefficient
of restitutiona=0.9 and the same heightLy=25, but differ-
ent widthsLx and different global area fractionsf0. For not
too large values off these data merge quite nicely, indicat-
ing that there is only a weak dependence ofG on the global
system parametersLx andf0 in the corresponding parameter
range. In this case constitutive equation(14) can be inter-
preted as the local equation of state of the system. The hori-
zontal line in Fig. 8 marks ideal-gas behavior, from whichG
deviates due to the collisional contribution to the pressure.
These deviations increase significantly with increases off.

The dotted line in Fig. 8 corresponds to the function,

Gsfd = 1 + s1 + adfx, s15d

wherex stands for the pair correlation function at contact of
the associated elastic hard-sphere gas in thermal equilibrium
[73]. Since x is not known exactly, we estimate it by the
Henderson approximation[Eq. (A6)] for numerical purposes.
In the context of granular gases, Eq.(15) occurred already in
[39]. In Ref. [68] the pair correlation function was studied in
a homogeneously driven inelastic system with periodic
boundary conditions. It was found to be nearly independent
of the coefficient of restitution and approximated well by the
Henderson approximation[Eq. (A6)]. In Ref. [31] this form
of G was used in the local equation of state(14) to theoreti-
cally predict psxd from simulations ofTsxd and fsxd in a
driven granular gas. Figure 8 reveals that this works gener-
ally quite well for up to rather high local area fractions
fsxd&0.5. In even denser systems agreement still holds for
the well fluidized parts. Deviations from Eq.(15) start to
occur when entering the transition zones to the frozen-out
stripe of particles in the center of these high-density systems.
The dash-dotted line in Fig. 8 corresponds to the interpola-
tion formula [2],

FIG. 7. (Color online) Master curve for rescaled local area frac-
tion in different low-density systems with the same line density(
a=0.9, l=10.24,, /Lx<0.03). The dotted line corresponds to the
theoretical prediction of Ref.[2].

FIG. 8. (Color online) Semilogarithmic parametric plots of func-
tion Gsfd from the local equation of state, Eq.(14), for different
systems(a=0.9, Ly=25, 0.01ø, /Lxø0.05). Also shown are the
theoretical predictions from our Eqs.(15) and (16), and Eq.(4) in
Ref. [67].
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Gsfd =
fc + f

fc − f
, s16d

for 0øf,fc, which connects the behavior of dilute(van
der Waals) and dense(ordered) elastic hard-sphere systems.
Here fc=p / s2Î3d<0.91 denotes the area fraction for or-
dered closed packings in two dimensions. Equation(16) was
applied to quasielastic granular gases in Ref.[2], and even
for our simulations witha=0.9 there is agreement with the
local data in the low-density regions up tofsxd&0.4. In
addition, the most dense regions of regularly ordered, frozen-
out particles in the center of the high-density systems are
described correctly, too. Yet another interpolation formula for
G, which is rather accurate for an elastic hard-sphere gas
even in the vicinity of the freezing transition, was put forth
in Eq. (4) in Ref. [67] and is depicted by the dashed line in
Fig. 8. The crossover between fluidized and frozen-out be-
havior in our inelastic, driven systems originates from the
transition zone at the border of the solidified stripe of par-
ticles in the system center. It is very smooth in comparison to
the coexistence region of the freezing transition for an equili-
brated elastic gas. Moreover, the location of the crossover
depends on the global system parameters. Since both inter-
polation formulas, Eq.(16) and that from Ref.[67], were
tailored for elastic systems in thermal equilibrium, it is sur-
prising to find such good agreement with the local data for
driven inelastic hard-sphere gases with restitutiona=0.9.

When lowering the coefficient of restitutiona from 0.9 to
0.8 (not shown), there are only little changes to the plot in
Fig. 8. In particular, the spread of the data pertaining to dif-
ferent systems increases, even for low densities. Still one
may be inclined to interpret Eq.(14) as a local equation of
state—at least approximately. This situation is intermediate
to the previous one witha=0.9 and the following one for
strongly inelastic systems with coefficient of restitutiona
=0.5. Figure 9 reveals major discrepancies in the local pres-
sure which are due to the systems with global area fractions
abovef0<0.2. The discrepancies occur even at positions in
the sample where the local area fractions are below 0.2 and

where all the more dilute systems, i.e., those withf0ø0.2,
agree reasonably with the proposal, Eq.(15). The concept of
a local equation of state is therefore no longer sustainable for
such strongly inelastic systems, and Eq.(14) merely plays
the role of a local constitutive equation, which depends in
addition on the global system parameters.

VI. ABSENCE OF SCALING FOR VELOCITY
DISTRIBUTIONS

Finally, we examine the local velocity distributions of the
driven granular gas in the stationary state. We distinguish
between the local distribution,

fxsx,vxd =
1

rsxdER
dvy fstatsx,vx,vyd, s17d

at positionx of the velocity componentvx in the direction of
the driving and the distribution,

fysx,vyd =
1

rsxdER
dvx fstatsx,vx,vyd, s18d

of the velocity componentvy perpendicular to the direction
of driving. By definition, these velocity distributions are nor-
malized to unity.

In order to determinefx and fy from the simulation we use
two different methods. The first one extracts them directly
according to their definitions(17) and (18) from fstat, which
was determined in the manner described in Sec. II C. One
disadvantage of this method is that it yields a smeared-out
velocity distribution, which is spatially averaged over the
width of strip Vx centered aroundx. This is of practically no
importance in the middle of the simulation box, but strongly
disturbing for resolving the subtleties which occur close to
the driving walls that are presented in Sec. VI A. The second
way of measuring the velocity distributions avoids this prob-
lem: To getf i (i =x or y) we keep track of all those particles
which pass the line parallel to they axis at positionx within
a very long time interval of lengtht and whoseith compo-
nent of the velocity lies in a small interval of widthDv
aroundvi. Let us enumerate these particles byni and denote
their velocity components byvx

snid and vy
snid. Then one has

(within the limits t→` andDv→0)

rsxdf isx,vid =
1

tDvLy
o
ni

1

uvx
snidu

, s19d

because fori =x, respectivelyi =y, the right-hand side of(19)
is equal to

E
R

dvy

uFxsx,vx,vydu
uvxu

respectively E
R

dvx

uFxsx,vx,vydu
uvxu

.

s20d

Here,Fxsx,vx,vyd=vx fstatsx,vx,vyd denotes thex component
of the (differential) current density in the stationary state at
positionx of particles with velocity componentsvx andvy.

Compared to the first method of measuring velocity dis-
tributions, this one is also statistically more effective for de-

FIG. 9. (Color online) Same as Fig. 8, but for more inelastic
systems(a=0.5, Ly=25, 0.01ø, /Lxø0.1).
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termining rare events, such as the high-velocity tails in Sec.
VI B. However, as far asfxsx,vxd is concerned for smallvx,
the second method is inferior to the first, because Eq.(19)
assigns a large weight to the relevant events and therefore
amplifies statistical fluctuations too.

A. Effects of the discontinuity at a driving wall

Particle-number conservation at a driving wall requires
the incoming particle flux at the wall to be equal to the
outgoing flux. For the velocity distributionfx this implies the
boundary condition[30],

fxs7Lx/2,vxd = Qs±vx − vdrivedS1 7
vdrive

vx
D

3fxs7Lx/2,−vx + vdrived, s21d

which must hold for allvx.0. HereQszd=1 for zù0, re-
spectivelyQszd=0 for z,0, denotes Heaviside’s unit-step
function andvdrive=1 in our units chosen. The boundary con-
dition (21) relates the distributionfx of velocities prior to a
collision with the wall to that after a collision with the wall.
In contrast, the velocity distributionfy must obey the usual
reflection symmetry invy everywhere in the system, that is,

fysx,vyd = fysx,− vyd, s22d

for all uxu øLx and allvy.0.
We measured the velocity distributionfxsx,vxd at 25 dif-

ferent positions in a moderately inelastic system with coeffi-
cient of restitutiona=0.9. Figure 10 shows the rescaled ve-

locity distribution f̃ xfx,vx/ÎTxsxdg= fxsx,vxdÎTxsxd,
measured using the first method. At the driving wallsf̃ x is
seen to obey the boundary condition(21). When moving
from a driving wall towards the center of the system, the gap

in f̃ x gradually gets smeared out, andf̃ x becomes more and
more symmetric. Clearly, even for this moderately inelastic

system f̃ x does not scale for differentx. The two extreme
cases forx=−Lx/2 andx=0 are shown together in Fig. 11.

The data forf̃ x at the wall were obtained with the second

method for measuring velocity distributions. This result is in
agreement with direct-simulation-Monte Carlo results in Ref.
[30] and molecular-dynamics simulations in Ref.[31].

B. High-velocity tails

Our main result for the velocity distributions is the non-
scaling and multiformity of their tails. In order to observe
these phenomena, extensive simulations for capturing rare
events are required and the data have to be analyzed on a
logarithmic scale. In contrast, on alinear scale the rescaled
velocity distributions seem to collapse approximately, as was
observed previously in e.g., Refs.[2,69]. As an example we

show in Fig. 12 the rescaled distributionsf̃ ysx,vy/ÎTysxdd
= fysx,vydÎTysxd in the middle of the samplesx=0d and at a

FIG. 10. (Color online) Rescaled velocity distributionsf̃ x for
different x. [System parameters:a=0.9, Lx=20, l=10.24(N=256,
f0=0.4).] FIG. 11. (Color online) Two rescaled velocity distributionsf̃ x

from Fig. 10: at the left wall and in the middle of the system.

FIG. 12. (Color online) Combined plot of rescaled velocity dis-

tributions of the same system as in Figs. 10 and 11:f̃ x in the middle

of the sample(green crosses), f̃ y at a driving wall(red squares), and

f̃ y in the middle(blue triangles). Also shown is a centered Gaussian
with unit variance(black solid line). The inset shows the center part
of the main graph with the(1433/2964/1340) data points being
smoothed[running average over(41/85/38) data points].
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driving wall sx= ±Lx/2d for the same moderately inelastic
systemsa=0.9d as that in Figs. 10 and 11. Clearly, the curves
are reflection symmetric invy. For comparison, we have also

included the symmetric distributionf̃ x in the middle of the
system. Deviations are visible for small velocities only, as
the inset of Fig. 12 shows. The corresponding Gaussian
(solid line) in Fig. 12 suggests that the velocity distributions
are close to but not identical to a Maxwellian. The approxi-
mate data collapse, observed on this level of accuracy in Fig.
12, even continues to hold if the coefficient of restitution of
the gas is varied to not too large an extent. In considerably
more inelastic systems, such as fora=0.5, this is not true

any longer. For example, the peak off̃ x measured in the
middle of the system would be considerably broader and

flatter than the ones off̃ y in the center and at the wall(not
shown).

In contrast, Fig. 13(a) shows the same data in Fig. 12 on
a semilogarithmicscale and also includes velocities of much
higher absolute values. From Fig. 13(a) it is evident that
scaling does not hold in the high-velocity tails of the distri-
butions either. Similar observations were made before in,
e.g., Refs.[31,45,46]. The type of decay in the high-velocity

tails is different for f̃ x and f̃ y, and also depends on the posi-
tion in the sample, the coefficient of restitutiona, and the
global area fractionf0. This is illustrated by examples of

different systems in Fig. 13. In the insets we showuln f̃ iu−1 on
a double-logarithmic scale in order to determine the decay
exponentb defined by

ln f̃ ys0,vy /ÎTys0dd ,
uvyu→`

− uvy /ÎTys0dub s23d

for f̃ y in the middle of the sample. The exponent is defined

accordingly for f̃ y at the wall andf̃ x in the middle of the
sample. For the moderately inelastic systems witha=0.9 in
the first row of Fig. 13, the asymptotics have been clearly
reached. We note thatb is different for the different distri-
butions, and also depends on the global area fractionf0.
Upon loweringa (top to bottom in Fig. 13) and/or decreas-

ing the global area fractionf0 (left to right), the tails of f̃ y
get more and more populated, that is,b decreases. In very
simple terms, this may be understood from the fact that(i)
the largest typical velocities are always of the order of
vdrive=1 (also see Fig. 14) and(ii ) thatvdrive/ÎTisxd increases
up to 20 with decreases ofa and f0. Hence, a Maxwellian
velocity distribution would not be able to supply enough
probability to particles with velocities of the order ofvdrive,
instead higher-populated tails are needed. This argument
suggests different behavior in different velocity regions so
that the distributions cannot be fitted to the functional form
(23) over the entire range of velocities[45]. Indeed, such a
behavior can be seen in Figs. 13(d)–13(f). The final asymp-
totics could not always be deduced from the simulations,
even though our data include velocities which are up to 40
times bigger than the appropriate granular velocitiesÎTi.

This applies tof̃ y in the middle of the sample in Fig. 13(e),
where we suspect that the final asymptotics have not been

reached. An asymptotic analysis off̃ x in the middle of the

sample is even more problematic due to particles that reach
the system center from a driving wall without undergoing a

collision. These particles give rise to the side peaks off̃ x in
Figs. 13(e) and 13(f), which has prevented us from determin-
ing b in these cases.

Figure 13 contains smoothed data like those in the inset of
Fig. 12, and the scales of the horizontal axes are determined
by the square root of the appropriate granular temperatures.
For comparison, Fig. 14 shows the unsmoothed data corre-
sponding to Fig. 13(f), plotted directly versusvi (in units of

vdrive). The side peaks off̃ x in the middle of the sample are
due to the above-mentioned particles which fly from a driv-
ing wall to the system center without undergoing a collision.
For the vast majority of particlesuvyu is less than 80% of the
driving velocity. It is in the region of this highest velocity

observed forf̃ y in the middle of the sample, thatf̃ x abruptly
changes its slope.

The exponentb has also been determined experimentally
in a strongly driven gas so that gravity effects are small[16].
A value of b<1.55 was measured for a gas with coefficient
of restitutiona<0.93. It was found to be remarkably inde-
pendent of the global area fractionf0, which was varied
from 0.05 to 0.3. We have also simulated the system of Ref.
[16] with zero gravity(not shown) and reproduced those au-
thors’ value forb. Even though the experimental data cover
a wide range of velocities, some of the interesting phenom-
ena discussed in Fig. 13 cannot be observed in this range.
For the same reason the significance of the particular value
b<1.55 should not be overestimated.

Simulations of a driven granular gas in a circularly shaped
box also yield stretched Gaussian tails[45]. In addition, evi-
dence is given thatb depends only on the coefficient of
restitution and the average ratio of the number of particle–
wall collisions and particle–particle collisions. For homoge-
neously driven systems the tail of the velocity distribution
was theoretically predicted[23] to be governed by the decay
exponentb=3/2.Simulations of homogeneously driven sys-
tems[70,71] observed the exponentb=3/2 only for unreal-
istically low values of the coefficient of restitution.

VII. SUMMARY AND OUTLOOK

In this paper we explored the steady-state properties of a
granular gas, driven by vibrating walls. We have measured
the full stress tensor, including the collisional contribution.
This allowed us to obtain a constitutive equation directly
from the simulations. The constitutive equation relates local
density, pressure, and temperature. For small inelasticities it
can be regarded as the local equation of state of the gas
because it is to a large extent independent of the global sys-
tem parameters. For strongly inelastic systems this interpre-
tation cannot be sustained, instead the constitutive relation
depends on the global volume fraction and sample geometry.
We have also measured local velocity distributions, whose
high-velocity tails were found to depend on the position in
the sample as well as on the coefficient of restitution and the
global volume fraction. Moreover, the tails are different for
the two velocity components parallel and perpendicular to
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FIG. 13. (Color online) Rescaled velocity distributionsf̃ x in the middle of the sample(green crosses), f̃ y at a driving wall(red squares),

and f̃ y in the middle(blue triangles) like in Fig. 12, but here smoothed data are shown on a semilogrithmic scale and velocities of much
higher absolute values are included. The solid line is a centered Gaussian with unit variance.(a)–(f) Different systems with decreasing global
area fractionf0 (left to right) and decreasing coefficient of restitutiona (top to bottom). The remaining system data areLx=20, l

=10.24sN=256d for the left column andLx=50,l=9.6sN=240d for the right column. The insets showuln f̃ iu−1 on a double-logarithmic scale

to determine the decay exponentb from Eq. (23). The dashed line is the best linear fit tof̃ x in the middle of the sample the solid line tof̃ y

in the middle, and the dotted line tof̃ y at the wall.(a) System corresponding to that in Fig. 12.
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the driving walls. To conclude, the stationary state of a
driven granular gas is in generalnonuniversal—in contrast to
the corresponding elastic system. This is not unexpected be-
cause the driven granular gas is a nonequilibrium state. Fur-
thermore, driving the system by energy input through the
walls is effective only if the distance between the driving
walls is finite so that the sample geometry enters naturally.

We plan to extend our studies in various directions. It is
straightforward to also consider rotational motion of the
disks by generalizing the collision rules to include tangential
restitution as well as Coulomb friction. Again, the question
arises as to what extent the additional parameters affect the
local equation of state. In this context it would be interesting
to study the effects of gravity, which is also important for
comparison with experiments. Finally, one might also inves-
tigate other driving mechanisms, like vibrations with finite
frequency and nonzero amplitude. Work along these lines is
in progress.
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APPENDIX: SIMPLE ENERGY-BALANCE ARGUMENT

Here we derive the energy balance[Eq. (12)] by using
arguments like those in Refs.[33,63]. We do this in a slightly
more general setting than needed for Eq.(12) and allow in
addition for inelastic collisions with the wall, characterized
by a coefficient of restitutionaw. Appropriate generalization
of the collision rule(4) includes both the driving velocity
and the coefficient of restitution with the wall,

v8 = v + Dvpw

with

Dvpw = f− s1 + awdvx ± vdrivegex. sA1d

The special case ofvdrive=0 andaw.1 provides an alterna-
tive driving mechanism, which, however, does not give rise
to a stationary state, as will be shown below. In order to be
able to treat this limit and for ease in reading of the formulas,
we refrain from using dimensionless physical units in this
appendix.

The average energy gainDEpw due to a single particle-
wall collision is estimated from Eq.(A1) by averaging the
kinetic energy before and after the collison with a Maxwell-
ian velocity distribution with(global) temperatureT. This
gives

DEpw =
m

2
Svdrive

2 + 4awÎ T

2pm
vdrive − s1 − aw

2 d
T

m
D .

sA2d

The collision frequency of particles with the left(right) wall
is estimated by

fpw =
N

Lx
Î T

2pm
, sA3d

where we have assumed the density to be spatially homoge-
neous throughout the system.

When two disks collide in the bulk, the average change in
total energy is computed from Eqs.(2) and (3) in a manner
similar to that for Eq.(A2) by averaging pre- and postcolli-
sional kinetic energy, which yields

DEpp = −
1 − a2

2
T. sA4d

Finally, the number of particle–particle collisions per time is
given approximately by Enskog’s collision frequency[23],

fpp =
N

Lx
laxÎTp

m
, sA5d

wherex is the pair correlation function at contact of a cor-
responding elastic gas in thermal equilibrium. Sincex is not
known exactly, we resort to the widely used Henderson ap-
proximation[72],

x <
1 − 7f/16

s1 − fd2 , sA6d

for numerical purposes. It may be viewed as a heuristic ra-
tional approximation to the virial expansion ofx and is the
two-dimensional equivalent to the Carnahan–Starling ap-
proximation [66] for a three-dimensional hard-sphere gas.
Additional higher-order terms to the Henderson approxima-
tion, which are proportional tof3/ s1−fd4, have turned out
to be irrelevant for our purposes and will therefore not be
taken into account.

Summing over energy loss in the bulk and energy gain at
the right and left walls, we obtain for the total change in
granular temperature,

FIG. 14. (Color online) Velocity distributions for the system in
Fig. 13(f), but with unsmoothed data and without rescaling of the
horizontal axis.
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dT

dt
<

2fpwEpw + fppEpp

N

=
m

Lx
Î T

2pm
Svdrive

2 + 4awÎ T

2pm
vdrive −

pceffT

2m
D .

sA7d

Here the dimensionless parameter,

ceff = c −
2

p
saw

2 − 1d, sA8d

is given in terms ofc=Î2laxs1−a2d, which was already
introduced in the text below Eq.(12). (We note thatla is the
dimensionless line density employed there.) We briefly dis-
cuss two special cases:

(a) For vdrive=0 and aw.1 no stationary state is
reached in general. Both energy gain and loss increase like
T3/2, resulting in Haff’s law,

dT

dt
= −

ceff

2Lx
Î p

2m
T3/2, sA9d

which has been discussed extensively in a different context
of freely cooling granular gases. Here the temperature con-
tinues to decrease or increase depending on whether dissipa-
tion or driving wins.

(b) For aw=1 andvdrive.0 the granular temperature
adjusts to the driving so that the stationary state with
dT/dt=0 is characterized by the quadratic equation,

1 + 2Î2T̄

p
−

pc

2
T̄ = 0. sA10d

Solution of Eq.sA10d for the dimensionless global tempera-

ture T̄=T/ smvdrive
2 d is given in Eq.s12d.
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